Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements.

نویسندگان

  • Erik C Garnett
  • Yu-Chih Tseng
  • Devesh R Khanal
  • Junqiao Wu
  • Jeffrey Bokor
  • Peidong Yang
چکیده

Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems. Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires. At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions--that the dopant distribution is uniform and that the surface (interface) charge density is known. These assumptions can be tested in planar devices with the capacitance-voltage technique. This technique has also been used to determine the mobility of nanowires, but it has not been used to measure surface properties and dopant distributions, despite their influence on the electronic properties of nanowires. Here, we measure the surface (interface) state density and the radial dopant profile of individual silicon nanowire field-effect transistors with the capacitance-voltage technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of EIS for dopant profile analysis in n-type silicon

An experimental setup has been developed for successive photo-electrochemical etch and EIS measurement of semiconductor samples. Furthermore an algorithm based on electrochemical capacitance-voltage (ECV) has been developed for calculating dopant profile based on the measurements by developed setup. Phosphorous diffusion profile in p-type silicon was estimated by employing developed setup and a...

متن کامل

Surface depletion thickness of p-doped silicon nanowires grown using metal-catalysed chemical vapour deposition

An accurate evaluation of the radial dopant profile in a nanowire is crucial for designing future nanoscale devices synthesized using bottom-up techniques. We developed a very slow wet chemical etchant for gradually reducing the diameters of metal-catalysed, boron-doped silicon nanowires with varying diameters and lengths. Particular care has been taken to perform the experiment at room tempera...

متن کامل

Doping Incorporation in InAs nanowires characterized by capacitance measurements

Sn and Se doped InAs nanowires are characterized using a capacitance-voltage technique where the threshold voltages of nanowire capacitors with different diameter are determined and analyzed using an improved radial metal-insulator-semiconductor field-effect transistor model. This allows for a separation of doping in the core of the nanowire from the surface charge at the side facets of the nan...

متن کامل

Characteristics of an oxidation-induced inversion layer in compensated p-type crystalline silicon

We report on the formation of a lightly doped p–n junction at the surface of compensated p-type silicon wafers, caused by dopant segregation during thermal oxidation. Experimental evidence and characterization of the junction is obtained by secondary ion mass spectrometry and hot probe measurements. For the first time the impact of the unexpected junction on the characterization of metal-oxide-...

متن کامل

Gate-All-Around Silicon Nanowire MOSFETs: Top-down Fabrication and Transport Enhancement Techniques

Scaling MOSFETs beyond 15 nm gate lengths is extremely challenging using a planar device architecture due to the stringent criteria required for the transistor switching. The top-down fabricated, gate-all-around architecture with a Si nanowire channel is a promising candidate for future technology generations. The gate-all-around geometry enhances the electrostatic control and hence gate length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2009